Jawabanatas soal pada limas segi empat beraturan T.ABCD, diketahui panjang rusuk alas 10cm dan panjang rusuk tegak TA=4sqrt6 cm. Jarak titik T terhadap bidang alas ABCD adalah cm.
Diketahui limas segi empat beraturan dengan panjang AB=4cm dan TA=8cm . Tinggi limas adalah ... * square root of 3cm 2 square root of 14cm 3 square root of 3cm 3 square root of 5cm 4 square root of 3cmQuestionGauthmathier3030Grade 8 YES! We solved the question!Check the full answer on App GauthmathGauth Tutor SolutionHigh school teacherTutor for 4 yearsAnswerExplanationFeedback from studentsWrite neatly 88 Excellent Handwriting 56 Help me a lot 55 Detailed steps 46 Clear explanation 38 Easy to understand 35 Correct answer 15 Does the answer help you? Rate for it!Gauthmath helper for ChromeCrop a question and search for answer. Its faster!Still have questions? Ask a live tutor for help live Q&A or pic step-by-step access to all gallery Tutor Now
Diketahuilimas segi empat beraturan T.ABCD dengan AB = 4 cm dan TA = 5 cm seperti pada gambar jarak titik A ke TC adalah
Diketahui limas segi empat beraturan seperti pada gambar. Jarak titik A ke garis TC adalah...A. 2β7 cmB. 2β14 cmC. 3β7 cmD. 3β14 cmE. 4β6 cmPembahasan Diketahui ilustrasi gambar limas segi empat adalah Ditanyakan Jarak titik A ke garis TC adalah...?Jawab * Jarak titik A ke garis TC ditunjukan oleh garis AP, dengan siku-siku di P. Perhatikan segitiga ABC.* Selanjutnya, perhatikan segitiga TOA. Kita akan mencari panjang OA dan panjang TO. * panjang OA OA = 1/2 AC = 1/2 x 6β2 = 3β2 cm * Panjang TO.* Setelah kita mempunyai data-data di atas, maka kita bisa membuat persamaan luas segitiga TOC dengan luas segitiga TAC. maka L. Segitiga TOC = L. Segitiga TAC 1/2 x AC x TO = 1/2 x TC x AP AC x TO = TC x AP 6β2 x 3β14 = 12 x AP 18β28 = 12 x AP 18β4x7 = 12 x AP = 12 x AP 36β7 = 12 x AP 36β7/12 = AP 3β7 = APJadi, jarak titik A ke garis TC adalah 3β7 cm. Jawabannya C.Itulah pembahasan soal UN SMA mengenai materi bangun ruang. Jika ada yang ingin ditanyakan atau didiskusikan perihal soal sejenis, silahkan tingalkan pesan kolom komentar. Haturnuhunnn.... Advertisement
Diketahuilimas segi empat beraturan T.ABCD dengan AB = 6cm dan AT = 10 cm. Apabila P titik tengah CT, maka jarak . PTS Semester 1 Ganjil - Matematika SMA Kelas 12
PertanyaanDiketahui limas segi empat beraturan . Jika panjang sisi alas 10cm dan panjang sisi tegak 12cm . Tentukan jarak titik puncak ke bidang alas!Diketahui limas segi empat beraturan . Jika panjang sisi alas dan panjang sisi tegak . Tentukan jarak titik puncak ke bidang alas!Jawabanjarak titik puncak ke bidang alas adalah jarak titik puncak ke bidang alas adalah PembahasanPerhatikanlimas segi empat beraturan berikut. Jarak titik puncak ke bidang alas adalah . Pada segitiga , panjang , yaitu Panjang dapat ditentukan dengan rumus pythagoras berikut. Dengan demikian,jarak titik puncak ke bidang alas adalahPerhatikan limas segi empat beraturan berikut. Jarak titik puncak ke bidang alas adalah . Pada segitiga , panjang , yaitu Panjang dapat ditentukan dengan rumus pythagoras berikut. Dengan demikian, jarak titik puncak ke bidang alas adalah Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!9rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!RvRachel viona Manullang Makasih β€οΈ
TinggiST = β256. Tinggi ST = 16 cm. Tinggi Limas = β [16Β² - 12Β²] Tinggi Limas = β (256 - 144) Tinggi Limas = β112. Tinggi Limas = β16.7. Tinggi Limas = 4β7 cm. Demikianlah pembahasan materi mengenai Contoh Soal dan Pembahasan Volume Limas Segi Empat yang bisa kami sampaikan kepada kalian semua. Semoga apa yang telah dijelaskan
Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui limas segi empat beraturan dengan AB=6 akar2 cm dan AT=10 cm. Apabila P titik tengah CT, maka jarak titik P ke diagonal sisi BD adalah ... cm 10 cm 6 akar2 cmJarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0348Diketahui kubus dengan panjang rusuk 6 cm. Jara...Teks videojika kita melihat hal seperti ini maka kita harus punya kembali jika yang ditanya adalah Jarak titik ke garis maka jarak itu harus tegak lurus terhadap garis nya apa maksudnya Mari kita bahas lebih lanjut di soal ini kita diketahui P adalah titik tengah dari CT makanya kita saling cari bertype Disini kemudian kita cari proyeksi titik p terhadap garis BD itu berada di tengah garis BD ini kita simpulkan dengan x kita tarik garis di sini Jadi ini adalah panjangnya juga dari t ke X sehingga terbentuk segitiga txt kita keluarkan segitiga yang untuk mempermudah perhitungan. nah ini adalah segitiga TSC dengan siku-sikunya di X kemudian di sini ada titik tengah p yang dicari adalah garis XP pertama kita cari dulu garis yang bisa dihitung di sini kita lihat yang bisa dihitung adalah garis XC karena garis x y adalah setengah dari diagonal alas persegi nya perlu kita ingat bahwa diagonal dari persegi adalah CV akar 2 maka disini XC adalah setengah dari diagonal sisi jadi kita cari X = setengah dikali diagonal adalah Sisi akar 2 sedangkan Sisinya adalah 6 akar 2 langsung kita substitusi jadi 6 akar 2 dikali akar 2 ini kita coret jadi 3 maka x = 3 dikali akar 2 dikali akar 2 itu akan hilang jadi 3 dikali 2 maka x y adalah 6 cm Nah kita masukkan di sini kita tulis x 6 cm kemudian PX adalah tinggi limas ini untuk mencari tinggi dari limas ini langsung saja di sini kan TC juga sudah diketahui TC adalah rusuk tegak dari limas itu 10 cm kita gunakan pythagoras maka x = 10 kuadrat dikurang 6 kuadrat maka akar dari 100 dikurang 36 yaitu akar dari 64 = 8 cm, Kemudian untuk mencari XP kita dapat gunakan rumus garis berat segitiga dimana x kuadrat = setengah dikali x kuadrat ditambah setengah dikali x kuadrat di kurang seperempat x kuadrat + saja kita masukkan langkah-langkahnya jadi XP kuadrat = setengah x x y adalah 6 jadi setengah dikali 6 kuadrat ditambah setengah dikali X ada 8 jadi 8 kuadrat dikurang 1 per 4 dikali TC nya adalah 10 jadi 10 kuadrat maka ini = setengah dikali 36 ditambah setengah dikali 64 dikurang 4 dikali 100 ini setengah dikali 36 kita dapat 18 + setengah dikali 64 kita dapat 32 dikurang seperempat kali 100 itu kita dapat 25 jadi 18 ditambah 32 dikurang 25 kita dapat adalah 25 tapi ingat ini model lah x kuadrat jadi untuk mencari XP = akar dari 25 jadi kita dapat XP adalah 5 cm jawabannya adalah a. Sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
GEOMETRILimas segi empat beraturan T.ABCD mempunyai panjang rusuk alas 10 cm dan tinggi 5 akar (3)cm. Titik P merupakan perpotongan ruas garis AC dan BD. Tentukan: nilai kosinus sudut antara ruas garis TA dan bidang alas limas. Sudut antara garis dengan bidang Dimensi Tiga GEOMETRI Matematika Cek video lainnya Teks video
Kelas 12 SMADimensi TigaSudut antara bidang dengan bidangDiketahui limas segi empat beraturan Panjang rusuk tegak akar11 cm dan panjang rusuk alas 2 akar2 cm. Sudut antara bidang TAD dan TBC adalah alpha, maka cos a= ....Sudut antara bidang dengan bidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0446Diketahui limas beraturan dengan panjang TA=AB=8 c...0234Diketahui sebuah bidang empat dengan AB=TC=4 cm dan...0328Pada limas beraturan dengan rusuk tegak 5 2 cm dan...Teks videoJika melihat soal seperti ini cara mengerjakannya adalah menggunakan konsep dimensi tiga rumus Pythagoras dan juga rumus cosinus yang ini adalah rumus phytagoras sedangkan yang ini adalah rumus cosinus diketahui limas segiempat beraturan t abcd panjang rusuk tegaknya adalah 11 cm panjang rusuk alas adalah 2 β 2 cm ingat bahwa alasnya berbentuk persegi ya sudut antara bidang tab dan bidang TBC adalah Alfa sudutnya itu diwakili oleh segitiga ini dengan alfa berada di sini. Misalkan titik p titik yang ini diberi nama Ki terlebih dahulu perhatikan segitiga ABC panjang BC adalah setengah dari panjangYaitu 2 akar 2 dibagi dua yaitu akar 2 cm panjang BC adalah panjang rusuk tegak yaitu akar 11 maka kita dapat mencari tq dengan rumus Phytagoras p q kuadrat = β 11 kuadrat yaitu 11 dikurangi dengan akar 2 kuadrat yaitu 2 maka akan menjadi 9 maka teki adalah akar dari 9 yaitu 3 maka panjang PQ adalah 3 cm kemudian kita perhatikan segitiga t p q panjang PQ adalah panjang rusuk 12 β 2 panjang PQ Yang tadi kita cari adalah 3. Perhatikan bahwa panjang TP dan panjang PQ itu sama ya maka panjang TP juga adalah 3 maka kita dapat mencari cos Alfa dengan menggunakan rumus cosinus p q kuadrat = P kuadrat ditambah y kuadrat dikurangi2 t p * t q cos Alfa kuadrat yaitu 2 akar 2 kuadrat adalah 8 p p kuadrat yaitu 3 kuadrat yaitu 9 ditambah t kuadrat yaitu 9 dikurangi 2 x 3 x 3 cos Alfa 8 = 18 dikurangi 23 x 3 adalah 18 * cos Alfa + 10 = minus 18 cos Alfa maka cos Alfa = 10 per 18 disederhanakan menjadi 5 per 9 maka jawabannya adalah yang B tanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Diketahuilimas segi empat beraturan T. ABCD dengan panjang AB = 10 cm dan AT = 10 akar 2 cm. Tentukan Jarak :
Diketahui limas segi empat beraturan Panjang semua rusuk limas 8 cm. Nilai tangen sudut antara bidang TBC dan bidang ABCD adalah...A. β3B. 1/2β6C. β2D. 1/2β2E. 1/2β3Pembahasan Diketahui Panjang rusuk limsa = 8 cmDitanyakan Nilai Tan sudut antara bidang TBC dan bidang ABCD ...?Jawab Kita ilustrasikan terlebih dahulu soal ke dalam gambar di bidang TBC dan bidang ABCD berpotongan pada garis BC. P titik tengah BC, maka TP dan OP tegak lurus BC. Sudut antara bidang TBC dan bidang alas ABCD adalah
PertanyaanDiketahui limas segiempat beraturan T.ABCD dengan panjang rusuk alas adalah 2 cm dan rusuk tegak 3 cm. Maka nilai tangen sudut antara bidang TAD dan bidang ABCD adalah. MM M. Mariyam Master Teacher Mahasiswa/Alumni Institut Pertanian Bogor Jawaban terverifikasi Jawaban nilai tangen sudut antara TAD dan ABCD adalah Pembahasan
ο»ΏKelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui limas segiempat beraturan T ABCD gambar berikut. Jarak titik A ke seperti pada TC adalahJarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0348Diketahui kubus dengan panjang rusuk 6 cm. Jara...Teks videopada soal ini terdapat limas t ABCD Yang di mana kita kan tuh kan jarak dari titik A ke garis TC pertama-tama kita akan menggambarkan segitiga Nah selanjutnya dari segitiga t ABC ini saya tarik garis tengah dari titik t ke garis AC tepat di bawahnya di sini saya misalkan titik t aksen jarak dari a ke c ini adalah 8 begitupun juga jarak dari teks ini adalah 8 jarak dari titik A ke c ini adalah merupakan jarak dari diagonal bidang yang dari alasnya sehingga panjang alasnya adalah 4 β 2 sehingga kalau di sini kita Tuliskan takson kece ini adalah = 2 akar 2 dan a g aksen ini adalahAgar2 Nah selanjutnya untuk mengetahui jarak dari titik ke titik a aksen maka dapat kita lihat segitiga siku-siku berikut. Jika saya mempunyai segitiga siku-siku yang Sisi siku-sikunya masing-masing adalah a akar b dan a akar c. Maka Sisi miringnya adalah a. Akar b. + c. Enggak ini adalah bentuk pengembangan dari rumus teorema Pythagoras Nah di sini 8 bisa saya tulis 2 * 44 adalah akar 16 hingga 8 bisa tulis 2 β 16 sehingga panjang dari t t aksen ini adalah 2 β 16 - 2 itu = 14 dan yang terakhir untuk mengetahui jarak dari a ke c maka kita buat segitiga t selanjutnya di sini saya tarik Garis dari titik A ke garis TCYang bertemu di titik a aksen Adapun di tengah a dengan CD tadi kita peroleh adalah kita misalkan t aksen di mana panjang dari TK t aksen ini adalah = 2 β 14 panjang dari a ke c ini adalah merupakan diagonal bidang dari alasnya yaitu = 4 akar 2 dan yang terakhir panjang dari Kediri ke c ini adalah = 8 cm sehingga untuk mengetahui a ke a aksen kita bisa menggunakan rumus dari luas segitiga dan rumus dari luas segitiga yaitu 2 * alas * tinggi Maka ketulis seperdua kali alasnya. Jika saya misalkan alasnya adalah a c maka tingginya adalah T aksen = seperduaMisalkan alasnya adalah 3 cm maka tingginya adalah a ke a aksen nah disini seperdua bisa kita coret selanjutnya kita masukkan nilainya a ke c ini adalah 4 akar 2 t t aksen ini adalah 2 β 14 ini = BC ini adalah 8 sekali kan dengan a. * a aksen Ya Allah jarak yang akan kita cari jarak dari a ke a aksen ini kita peroleh 4 akar 2 x 2 akar 4 itu sama dengan 8 * β 28 sebagai dengan 88 ini kita coret sehingga kita peroleh panjang dari a ke a aksen ini adalah β 28 cm sehingga jawaban yang benar di sini adalah opsi B Oke teman-teman sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jawabanpaling sesuai dengan pertanyaan Diketahui limas segi empat beraturan T.ABCD Setela dengan panjang rusuk alas 8" "cm dan ti
BerandaDiketahui limas segi empat beraturan dengan...PertanyaanDiketahui limas segi empat beraturan dengan rusuk alas 6 cm dan rusuk tegak 9 cm. Jika titik O merupakan perpotongan diagonal alas, maka jarak titik O ke bidang TBC adalah...cmDiketahui limas segi empat beraturan dengan rusuk alas 6 cm dan rusuk tegak 9 cm. Jika titik O merupakan perpotongan diagonal alas, maka jarak titik O ke bidang TBC adalah...cmNAMahasiswa/Alumni Universitas Negeri PadangPembahasanPerdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!8rb+Β©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
NnOPcs. 4250ymowt6.pages.dev/4734250ymowt6.pages.dev/1574250ymowt6.pages.dev/4744250ymowt6.pages.dev/254250ymowt6.pages.dev/1364250ymowt6.pages.dev/2214250ymowt6.pages.dev/904250ymowt6.pages.dev/428
diketahui limas segi empat beraturan t abcd